
Building TSmiley
Get started with component building and have fun too!
by Nick Hodges

Delphi breaks new ground in
many areas. One area that

certainly attracts a lot of attention
from developers is the ability to
build, quickly and easily, native
components. Bob Swart has been
going into some detail about
component building in his Under
Construction column, but per-
haps you’ve not been following it
from the start and feel the need
for a refresher on the basics of
component construction. This
article is for you!

I have built a simple Delphi com-
ponent which demonstrates just
how easy the process is. My little
Smiley component changes faces
from happy to sad to indifferent,
among others, depending upon the
whim and mood of the program-
mer. Smiley also doesn’t like getting
clicked on, demonstrating how
easy it is to override default event
handlers.

The resulting code also shows a
number of techniques, including
the use of Run Time Typing Infor-
mation (RTTI) and properties, as
well as the new event model itself.
In addition, I built a basic Property
Editor to make it easier for users to
choose Smiley’s mood.

Building The Framework
Though Delphi itself is a visual
development tool, component
building is done the old fashioned
way – largely by typing code.
Delphi does provide the user with
a tool to build the basic framework
for the component, but from there
on code generation is up to the
programmer. Selecting File | New
Component brings up a dialog box
which asks for a new component
name, its base class and the palette
page to which the component
should be added. A parent class for
the new component can be
selected from any component
currently registered with Delphi.
Clicking the Ok button brings up the

➤ This example shows just how indispensable TSmiley is!

code editor with the skeleton code
for the new component.

Initialization
Delphi’s new object model uses a
slightly different convention for in-
itializing and destroying objects
compared to OWL. Rather than the
traditional Init, Object Pascal uses
Create as the default constructor
name. Another change is the fact
that all classes in Delphi descend
from the TObject class, so every
constructor called Create will be
overriding an ancestor method.

Smiley’s creation is declared as
shown in constructor TSmiley.
Create in Listing 1 (which shows all
the code for the Smiley compo-
nent, which is also included on the
disk of course).

Delphi makes extended use of
enumerated types, so in keeping
with that, I created an enumerated
type, TMood, to define the various
moods that Smiley could take on.
Since I will use the good old API call
LoadBitmap to get the various faces
out of a resource file, I also need an
array of PChars to use in passing the
bitmap name to the API call. Smiley

initializes itself with the smHappy
face, but the user can easily change
this with the Object Inspector.
Once the fMood property is set,
Smiley calls the LoadBitmap API call
to get the selected bitmap from the
resource file.

Note also that the initialization of
the TBitmap type differs from OWL
as well. All Delphi objects are cre-
ated on the heap and are automat-
ically de-referenced. Since virtually
everything points to the heap,
there is no need to de-reference
with the good old ^ any more as
Delphi does it ‘automagically’ at
compile time. Dedicated OWL pro-
grammers will have to break the
old habit of initializing objects with
MyNewObject.Create; and type

MyNewObject :=
 TNewObject.Create;

Properties
Object Pascal’s new class model
includes a powerful new feature:
properties. Properties allow a
programmer to create variables
that appear to the component user
as nothing more than ordinary

Febuary 1996 The Delphi Magazine 47

variable fields. To the component
builder, however, they combine
both data and methods. They also
have all the advantages but none of
the drawbacks of private data. The
data is protected from meddling
inheritors, but is still accessible to
less interloping ones. Very often a
change in a variable will require a
change in any number of other vari-
ables or program states, and prop-
erties allow for changing these
variables with a simple assignment
statement by the user.

For example, Smiley has a single
simple property called Mood, which

illustrates the value of properties.
Mood can take on any of the TMood
values, but of course each time
Mood changes, the bitmap has to
change as well. Properties allow
the programmer to do all of the
work behind the scenes, while on
the surface the component user
sees a simple variable change. If
the program, either at run-time or
design time, changes the value of
the property Mood, Smiley calls the
SetMood function automatically,
which in turn performs the neces-
sary work to change the bitmap to
the required face. Mood is declared:
property Mood: TMood
 read FMood write SetMood;

Properties can be accessed by
two different means. If the act of
reading the current value of the
property requires no further proc-
essing or calculation, the “reader”
simply provides the current value
of the private field (Delphi follows
the convention of adding the letter
F to the beginning of private prop-
erty values). This is shown above,
as the value of Mood is simply ac-
cessed through the private vari-
able FMood. If there were a need to
process or change something
whenever a call was made for the
current value of the property, then
a function could be declared which
takes no parameter and returns the

unit Smiley;
{$R Smiley.res}
interface
uses
 WinProcs, Classes, Graphics, Controls, StdCtrls,
 Messages, ExtCtrls;
procedure Register;
type
 TMood = (smHappy, smSad, smShades, smTongue,
 smIndifferent, smOoh);
const
 MoodString : array[tMood] of PChar =
 (’smHappy’, ’smSad’, ’smShades’, ’smTongue’,
 ’smIndifferent’, ’smOoh’);
 MaxHeight = 26;
 MaxWidth = 26;
type
 TSmiley = class(TImage)
 private
 { Private declarations }
 Face : TBitmap;
 FMood, OldMood : TMood;
 procedure SetBitmap;
 procedure SetMood(NewMood: TMood);
 procedure WMSize (var Message: TWMSize);
 message wm_paint;
 public
 { Public declarations }
 constructor Create(AOwner: TComponent); override;
 destructor Free;
 procedure Toggle;
 procedure MouseDown(Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer); override;
 procedure MouseUp(Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer); override;
 published
 property Mood: TMood read FMood write SetMood;
 end;

implementation
Uses
 Choose, DsgnIntf;

constructor TSmiley.Create(AOwner: TComponent);
begin
 inherited Create(AOwner);
 FMood := smHappy;
 Face := TBitmap.Create;
 {Old-fashioned API call}
 Face.Handle := LoadBitmap(hInstance, ’Happy’);
 Self.Height := MaxHeight;
 Self.Width := MaxWidth;
 SetBitmap;
 OldMood := smHappy;
end; {Create}

destructor TSmiley.Free;
begin
 Face.Free; {Use Free rather than Destroy,
 as Free checks for a nil pointer first}

 inherited Free;
end; {Free}

procedure TSmiley.Toggle;
begin
 if fMood = smOoh then fMood := smHappy else
 Inc(fMood); {Don’t allow fMood to overflow}
 SetBitmap;
end; {Toggle}

procedure TSmiley.SetBitmap;
begin
 Face.Handle :=
 LoadBitmap(hInstance, MoodString[fMood]);
 Self.Picture.Graphic := Face as TGraphic;
 {Use RTTI to cast face as TGraphic, needed by TImage}
end; {SetBitmap}

procedure TSmiley.SetMood(NewMood: TMood);
begin
 FMood := NewMood;
 SetBitmap;
end; {SetMood}

{This method will respond to a mouse push on the Smiley
 by storing the old face for later use and giving the
 “Sad” face. Smileys don’t like to get clicked on!}
procedure TSmiley.MouseDown(Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 inherited MouseDown(Button, Shift, X, Y);
 OldMood := Mood;
 SetMood(smSad);
end; {MouseDown}

{Restores old face when the mouse comes back up}
procedure TSmiley.MouseUp(Button: TMouseButton; Shift:
TShiftState; X, Y: Integer);
begin
 inherited MouseUp(Button, Shift, X, Y);
 SetMood(OldMood);
end; {MouseUp}

{Keeps the user from sizing the Smiley at design time.
 You can use the ’csDesigning in ComponentState’ to
 control what the user can do at design time}
procedure TSmiley.WMSize(var Message: TWMSize);
begin
 inherited;
 if (csDesigning in ComponentState) then begin
 Width := MaxWidth;
 Height := MaxHeight;
 end;
end; {WMSize}

procedure Register;
begin
 RegisterComponents(’Custom’, [TSmiley]);
 RegisterPropertyEditor(TypeInfo(TMood),
 TSmiley, ’Mood’, TMoodProperty);
end; {Register}
end.

➤ Listing 1

48 The Delphi Magazine Issue 6

value of the property. Delphi con-
vention says that this function
would be declared as:

function GetMood: TMood;

On the other hand, if the program-
mer wants to set a new value for
Mood, this call would be made:

MySmiley.Mood := smSad;

Smiley calls the private method
SetMood, the “writer,” which takes
the new mood, smSad, as its parame-
ter. It performs the necessary steps
to change the bitmap from its cur-
rent state to the new state. Thus, a
great deal of work can be hidden
from the component user, allowing
them to get a lot accomplished by
making one simple assignment
statement. Users of a component
do not even need to know how this
is done or what is going on in the
background. They only need to
know that all the housekeeping is
being taken care of for them with
the single assignment statement.

Notice also that the Mood prop-
erty is declared in the published
portion of the type declaration.
Published properties are able to be
displayed in the Object Inspector,
so settings can be changed at de-
sign time. The Object Inspector
recognizes published properties
and will automatically add the new
properties to its list, making them
available at design time.

Events
Almost all components will have
some set of pre-defined events as-
sociated with them such as mouse
clicks and key strokes. Delphi’s
event model allows the designer to
assign methods – event handlers in
Delphi parlance – to an event which
will be called whenever that event
occurs. Common events are
OnClick, OnKeyDown and OnExit.
Events are nothing more than
pointers to an event handler. An
event handler is a method defined
by the programmer which will be
called when that particular event
fires. A programmer can assign
event handlers to events at design
time through the Object Inspector,
or at run-time using assignment

statements. Thus, the program
behavior at run-time can be altered
by changing the event handlers in
the code.

To illustrate this, I created Smiley
to have an aversion to being
clicked on. In order to do this, I had
to override the default MouseDown
and MouseUp event handlers. Most
Delphi components can react to a
variety of events which are most
normally described with the prefix
On, such as OnClick, OnKeyPress,
OnMouseDown, etc. At design time,
the Object Inspector will allow the
user to quickly create an event han-
dler to deal with the occurrence of
that event. As a general rule, VCL
components have default handlers
corresponding to their OnXXXX,
named to match the event name.
For example, the OnClick event has
a default handler Click.

To give Smiley his aversion to
mouse clicks, I overrode the
default handlers for OnMouseDown
and OnMouseUp. They are named,
surprisingly, MouseDown and MouseUp
and are declared as shown in
Listing 1.

These event handlers are proce-
dures of type TMouseEvent and are
declared accordingly. The method
contains all of the information
about the mouse click, including
the button used, its location and
keyboard state. A programmer
could easily use that information
when handling the event.

In this case, Smiley is only inter-
ested that the event occurred.
When the left mouse button goes
down, Smiley first calls his old, de-
fault OnMouseDown handler to insure
correct processing of the event. He
then shows his displeasure by stor-
ing his old mood and displaying his
sad face. When the mouse comes
back up, Smiley returns his mood
to the stored OldMood.

Property Editors
Just as Delphi allows new proper-
ties to be added to components, it
allows for the creation of property
editors for those new properties.
Delphi provides basic property
editors for all of the standard data
types like strings, integers and enu-
merated types. Each of these prop-
erty editors have the basic
methods needed to maintain val-
ues of various types in the Object
Inspector. The basic enumerated
types editor can be seen by double-
clicking on the property Cursor
when a form has the focus in the
Object Inspector. A drop-down box
appears listing all of the types of
cursors available. Some property
editors, like the font editor, are a
bit more complex. The font
property editor provides a dialog
box that lets you edit the entire
multiple value property at once.

Smiley also provides a property
editor for the Mood property. Dou-
ble clicking on the Mood property
will bring up a small dialog box
which allows the user to select the
desired mood for Smiley from a
group of mutually exclusive
speedbuttons.

To create a basic property editor
such as the one Smiley uses took
two steps (the code is in Listing 2
by the way). First, I needed to de-
sign a dialog box that would allow
a user to make the choice of
moods. The dialog box works like
any other dialog box does. In this
case, it provides six different speed
buttons that have their AllowAllUp
properties set to false. This causes
them to function like glorified radio
buttons, allowing only for a single
choice to be made from the six. I
use the Tag property to keep track
of the currently selected button.
The tag settings correspond to the
position of the mood in the

➤ TSmiley’s Mood
property editor

Febuary 1996 The Delphi Magazine 49

enumerated type TMood and the dia-
log has its own property to hold the
current Mood setting.

Secondly, I created the property
editor type by descending from
TEnumProperty, Delphi’s default
property editor for an enumerated
type. I had to override two meth-
ods, GetAttributes and Edit, to cre-
ate the new property editor.
GetAttributes is a function call that
defines the characteristics of the
editor. In this case, I merely set the
descendant to have the property
paDialog, meaning that the editor
would provide a dialog to edit the
property.

Overriding the Edit function tells
the new property editor to pro-
duce the dialog box upon demand
and also provides the small ‘...’ box
in the Object Inspector, which
alerts the user that there is a dialog
available to edit the property. Edit
merely calls the dialog box and re-
turns the value of the users selec-
tion. It uses a call to GetOrdValue to
properly set the current value in
the new dialog box and, once the

user has made a selection, the
procedure calls SetOrdValue to set
the current value of the property.
Both of these methods are de-
scended from the parent property
editor.

Property editors must be
registered with Delphi just like
components are and the call is
RegisterPropertyEditor. Smiley
registers his Mood editor like this:

RegisterPropertyEditor(
 TypeInfo(TMood), TSmiley,
 ’Mood’, TMoodProperty);

This call will alert Delphi that there
is a property editor for the TMood
type, that it is to be used for the
TSmiley component, that the name
of the property is Mood and that the
property editor should be of type
TMoodEditor. Now, when the user
double clicks on the Mood selection
or clicks the ‘...’ button, a dialog
box will appear, allowing the user
to select the desired mood.

Odds And Ends
Smiley has a couple more interest-
ing features hidden away which

illustrate some of the finer points
of Object Pascal and the VCL. One
of these is the use of Run Time
Typing Information (RTTI).

RTTI allows the programmer to
check the type of a variable at run-
time, as you might surmise. This
often comes into play with event
handlers, which can never be sure
of what the type of their Sender is.
Smiley illustrates the type checking
that can go on in his Property
Editor Dialog. When the Mood prop-
erty of the dialog is changed,
SetMood gets called (see Listing 2 for
the full source code).

SetMood establishes the new
value, but of course it must update
whichever of the six speedbuttons
is depressed. It does this by cycling
through all the components on the
form, a list of which is kept in the
Components property of the form
itself.

The procedure then checks the
type of each of the components
using the new reserved word is,
which returns True if the variable is
of the specified type and False if it
is not. If it finds one that is a speed-
button, then it knows that it is safe

unit Choose;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes,
 Graphics, Controls, Forms, Dialogs, Buttons, ExtCtrls,
 StdCtrls, Smiley, DsgnIntF, TypInfo;
type
 TChooseDlg = class(TForm)
 BitBtn1: TBitBtn;
 Panel1: TPanel;
 SpeedButton1: TSpeedButton;
 SpeedButton2: TSpeedButton;
 SpeedButton3: TSpeedButton;
 SpeedButton4: TSpeedButton;
 SpeedButton5: TSpeedButton;
 SpeedButton6: TSpeedButton;
 procedure SpeedButton1Click(Sender: TObject);
 procedure FormCreate(Sender: TObject);
 private
 FMood : TMood;
 procedure SetMood(NewMood: TMood);
 public
 property Mood: TMood read FMood write SetMood;
 end;
 TMoodProperty = class(TEnumProperty)
 function GetAttributes:
 TPropertyAttributes; override;
 procedure Edit; override;
 end;
var
 ChooseDlg: TChooseDlg;

implementation
{$R *.DFM}

procedure TChooseDlg.SpeedButton1Click(Sender: TObject);
begin
 FMood := TMood((Sender as TSpeedButton).Tag);
end; {SpeedButton1Click}

procedure TChooseDlg.FormCreate(Sender: TObject);
begin
 SpeedButton1.Down := True;
end; {FormCreate}

procedure TChooseDlg.SetMood(NewMood: TMood);
var
 Counter: Integer;
begin
 FMood := NewMood;
 for Counter := 0 to ComponentCount - 1 do begin
 if (Components[Counter] is TSpeedButton) then begin
 if TSpeedButton(Components[Counter]).Tag =
 Ord(NewMood) then
 TSpeedButton(Components[Counter]).Down := True;
 end;
 end;
end; {SetMood}

function TMoodProperty.GetAttributes:
 TPropertyAttributes;
begin
 Result := [paDialog];
end; {GetAttributes}

procedure TMoodProperty.Edit;
var
 ChooseDlg: TChooseDlg;
begin
 ChooseDlg := TChooseDlg.Create(Application);
 try
 ChooseDlg.Mood := TMood(GetOrdValue);
 ChooseDlg.ShowModal;
 SetOrdValue(Ord(ChooseDlg.Mood))
 finally
 ChooseDlg.Free
 end;
end; {Edit}
end.

➤ Listing 2

50 The Delphi Magazine Issue 6

to typecast it as a speedbutton and
make the correct changes to the
dialog setting. In this case, SetMood
makes sure that the correct, cur-
rent, setting for the Mood property
is selected when the dialog box is
opened.

Sometimes, a component de-
signer may want to distinguish be-
tween the behavior of a component
at run-time and at design-time.
Since Delphi is constantly parsing
a program’s code in the back-
ground, allowing for components
to function at design time, there
may be times when a designer
doesn’t want a component to
exhibit run-time behavior. This can
be accomplished by using the
ComponentState set:

TComponentState = set of
 (csLoading, csReading,
 csWriting, csDestroying,
 csDesigning);

This set includes csDesigning,
which very handily allows a

component to determine whether
it’s being used in run-time or design
time (that is, within the Delphi
environment).

In Smiley’s case, I have overrid-
den the response to the wm_paint
message, causing Smiley not to be
sizable at design-time. A simple
check for csDesigning in Component-
State makes the determination. Af-
ter calling the inherited response,
Smiley resets its original size if the
component is in design mode. See
the TSmiley.WMSize in Listing 1.

Component Bitmaps
In order to have a custom bitmap
show up on the palette, a compo-
nent should have a corresponding
.DCR file, which is really a resource
file with a different extension, con-
taining a single bitmap that is 24x24
pixels. You can use the Image Edi-
tor to create a .DCR file.

Conclusion
When you’ve installed Smiley (it’ll
go onto the Custom palette page by

default) it’ll only be two mouse
clicks away from being a fun addi-
tion to any project!

Smiley covers many of the tech-
niques that a skilled component
builder will employ. He shows us
basic component building, event
handling, properties, property edi-
tors and more.

It is left as an exercise for the
reader to figure out exactly what
one would do with the Smiley com-
ponent. I suppose it might be
considered “truly useless”, except
for illustrating the finer points of
component construction!

Nick Hodges, an experienced
Delphi and Pascal developer, can
be contacted via CompuServe on
71563,2250

Febuary 1996 The Delphi Magazine 51

	Building the Framework
	Initialization
	Properties
	Events
	Property Editors
	Odds and Ends
	Component Bitmaps
	Conclusion

